

Case Study

PowerBuilder Performance Review

 1

PowerBuilder Performance Review

Client: Recruitment Software House

Business Size: SME

Industry: Recruitment

Country: Netherlands

Technology: PowerBuilder 2022, SQL Server 2019

Objective: Review slow performance of current Application

limiting change to Architecture

Background

The Client, a software house, has developed a PowerBuilder

application over the past 25 years. It is currently utilising PowerBuilder

2022 and SQL Server 2019. They’ve been experiencing significant

performance issues, particularly when using the application’s search

functionality. The application follows a layered architecture, including

Presentation, Business, Persistence and Database Layers. Due to

inefficiencies in design and execution, performance bottlenecks were

observed in response times, CPU utilisation, memory consumption and

database queries.

Methodology

To assess and address the client’s performance issues, a

comprehensive analysis was conducted on their PowerBuilder 2022

and SQL Server 2019 applications, identifying key bottlenecks and

areas for improvement. These findings were used to develop a set of

actionable recommendations, which served as a roadmap for

performance optimisation, ensuring better application stability,

efficiency and user experience. Future implementation of these

optimisations could lead to significant improvements in the system

responsiveness and operational effectiveness.

Consultant Contribution

Following the performance review, the consultant delivered a

comprehensive set of technical recommendations to address the key

issues identified in applications:

Case Study

PowerBuilder Performance Review

 2

Optimisation of Layered Architecture

• Recommended the consolidation of the Business and

Persistent Layers to streamline processing.

• Proposed the migration of SQL queries to stored procedures

and functions to enhance execution efficiency.

Reduction of Front-End Overhead

• Conducted code mining to remove redundant PowerScript

logic and unnecessary visual controls.

• Used PowerBuilder’s native event handling to optimise

function execution.

Database Optimisation

• Suggested converting frequently used views into indexed

tables where applicable.

• Identified and reduced unnecessary joins and subqueries in

critical queries.

SQL Query Optimisation

• Recommended replacing redundant SELECT DISTINCT

statements with well-structured queries.

• Introduced the use of NOLOCK directives to reduce

unnecessary table locking.

• Proposed indexing enhancements to improve query execution

times.

Enhancement of Presentation Layer Performance

• Suggested restricting the number of concurrent search

windows.

• Recommended implementing pagination for large result sets

to improve efficiency.

• Introduced the use of UI skeletons to provide visual feedback

during data retrieval.

Case Study

PowerBuilder Performance Review

 3

Challenges

The analysis highlighted several key performance concerns:

Layered Architecture Overhead (Critical)

• The application's layered architecture increased the number

of interactions between layers, leading to slow processing times.

• Shared resource environments exacerbated these issues due

to inefficient handling of system dependencies.

Heavy Front-End (Critical)

• The PowerBuilder front-end consisted of over 650,000 lines of

code, leading to excessive execution time.

• Large numbers of visual and non-visual controls contributed

to performance degradation.

Use of Views in Database Queries (Severe)

• The application relied heavily on database views instead of

direct table queries, causing additional processing overhead.

• Analysis found 294 views were in use, with many capable of

being optimised into table structures.

Inefficient SQL Queries (Severe)

• Widespread use of SELECT DISTINCT statements slowed

down the query execution, especially in large datasets.

• The lack of NOLOCK directives resulted in unnecessary table

locking and reduced efficiency.

Presentation Layer Design Flaws (Medium)

• Unlimited instances of search windows lead to excessive

memory consumption and orphaned database connections.

• Retrieving large result sets without pagination overloaded the

database and network, reducing responsiveness.

• No user feedback during data retrieval created a poor user

experience.

